::p_load(sf, sfdep, tmap, plotly, tidyverse,zoo,Kendall) pacman
In-class Exercise 2: Emerging Hot Spot Analysis: sfdep methods
Getting started
Installing and Loading the R Packages
The Data
Importing geospatial data
<- st_read(dsn = "data/geospatial",
hunan layer = "Hunan")
Reading layer `Hunan' from data source
`D:\zzc\ISSS624\In-class_EX\In-class_EX2\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS: WGS 84
Importing attribute table
<- read_csv("data/aspatial/Hunan_GDPPC.csv") GDPPC
Rows: 1496 Columns: 3
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): County
dbl (2): Year, GDPPC
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Creating a Time Series Cube
<- spacetime(GDPPC, hunan,
GDPPC_st .loc_col = "County",
.time_col = "Year")
is_spacetime_cube(GDPPC_st)
[1] TRUE
Computing Gi*
Deriving the spatial weights
<- GDPPC_st %>%
GDPPC_nb activate("geometry") %>%
mutate(nb = include_self(st_contiguity(geometry)),
wt = st_inverse_distance(nb, geometry,
scale = 1,
alpha = 1),
.before = 1) %>%
set_nbs("nb") %>%
set_wts("wt")
! Polygon provided. Using point on surface.
Warning: There was 1 warning in `stopifnot()`.
ℹ In argument: `wt = st_inverse_distance(nb, geometry, scale = 1, alpha = 1)`.
Caused by warning in `st_point_on_surface.sfc()`:
! st_point_on_surface may not give correct results for longitude/latitude data
head(GDPPC_nb)
spacetime ────
Context:`data`
88 locations `County`
17 time periods `Year`
── data context ────────────────────────────────────────────────────────────────
# A tibble: 6 × 5
Year County GDPPC nb wt
<dbl> <chr> <dbl> <list> <list>
1 2005 Anxiang 8184 <int [6]> <dbl [6]>
2 2005 Hanshou 6560 <int [6]> <dbl [6]>
3 2005 Jinshi 9956 <int [5]> <dbl [5]>
4 2005 Li 8394 <int [5]> <dbl [5]>
5 2005 Linli 8850 <int [5]> <dbl [5]>
6 2005 Shimen 9244 <int [6]> <dbl [6]>
<- GDPPC_nb %>%
gi_stars group_by(Year) %>%
mutate(gi_star = local_gstar_perm(
%>%
GDPPC, nb, wt)) ::unnest(gi_star) tidyr
Mann-Kendall Test
<- gi_stars %>%
cbg ungroup() %>%
filter(County == "Changsha") |>
select(County, Year, gi_star)
ggplot(data = cbg,
aes(x = Year,
y = gi_star)) +
geom_line() +
theme_light()
#p <- ggplot(data = cbg,
# aes(x = Year,
# y = gi_star)) +
# geom_line() +
# theme_light()
# ggplotly(p)
%>%
cbg summarise(mk = list(
unclass(
::MannKendall(gi_star)))) %>%
Kendall::unnest_wider(mk) tidyr
# A tibble: 1 × 5
tau sl S D varS
<dbl> <dbl> <dbl> <dbl> <dbl>
1 0.485 0.00742 66 136. 589.
<- gi_stars %>%
ehsa group_by(County) %>%
summarise(mk = list(
unclass(
::MannKendall(gi_star)))) %>%
Kendall::unnest_wider(mk) tidyr
Arrange to show significant emerging hot/cold spots
<- ehsa %>%
emerging arrange(sl, abs(tau)) %>%
slice(1:5)
Performing Emerging Hotspot Analysis
<- emerging_hotspot_analysis(
ehsa x = GDPPC_st,
.var = "GDPPC",
k = 1,
nsim = 99
)
Visualising the distribution of EHSA classes
ggplot(data = ehsa,
aes(x = classification)) +
geom_bar()
Visualising EHSA
<- hunan %>%
hunan_ehsa left_join(ehsa,
by = join_by(County == location))
<- hunan_ehsa %>%
ehsa_sig filter(p_value < 0.05)
tmap_mode("plot")
tmap mode set to plotting
tm_shape(hunan_ehsa) +
tm_polygons() +
tm_borders(alpha = 0.5) +
tm_shape(ehsa_sig) +
tm_fill("classification") +
tm_borders(alpha = 0.4)
Warning: One tm layer group has duplicated layer types, which are omitted. To
draw multiple layers of the same type, use multiple layer groups (i.e. specify
tm_shape prior to each of them).